INVARIANT SUBALGEBRAS OF THE SMALL

نویسندگان

چکیده

Various aspects of orbifolds and cosets the small $\mathcal{N}=4$ superconformal algebra are studied. First, we determine minimal strong generators for generic specific levels. As a corollary, obtain vertex global sections chiral de Rham complex on any Enriques surface. We also identify with $\text{Com}(V^{\ell}(\mathfrak{sl}_2), V^{\ell+1}(\mathfrak{sl}_2) \otimes \mathcal{W}_{-5/2}(\mathfrak{sl}_4, f_{\text{rect}}))$ in addition at special levels Grassmanian principal $\mathcal{W}$-algebras type $A$ degenerate admissible These coincidences lead us to novel level-rank duality involving Grassmannian supercosets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Semisimple Subalgebras of Semisimple Lie Algebras

The goal of Section 2 is to provide a proof of Theorem 2.0.1. Section 3 introduces the necessary facts about Lie algebras and representation theory, with the goal being the proof of Proposition 3.5.7 (ultimately as an application of Theorem 2.0.1), and Proposition 3.3.1. In Section 4 we prove the main theorem, using Propositions 3.3.1 and 3.5.7. In Section 5, we apply the theorem to the special...

متن کامل

Tensor subalgebras and First Fundamental Theorems in invariant theory

Abstract. Let V = C and let T := T (V ) ⊗ T (V ∗) be the mixed tensor algebra over V . We characterize those subsets A of T for which there is a subgroup G of the unitary group U(n) such that A = T. They are precisely the nondegenerate contraction-closed graded ∗-subalgebras of T . While the proof makes use of the First Fundamental Theorem for GL(n,C) (in the sense of Weyl), the characterizatio...

متن کامل

On the Cartan Subalgebras of Lie Algebras over Small Fields

In this note we study Cartan subalgebras of Lie algebras defined over finite fields. We prove that a possible Lie algebra of minimal dimension without Cartan subalgebras is semisimple. Subsequently, we study Cartan subalgebras of gl(n, F ). AMS classification: 17B50

متن کامل

Invariant Differential Operators for Non-Compact Lie Groups: Parabolic Subalgebras

In the present paper we start the systematic explicit construction of invariant differential operators by giving explicit description of one of the main ingredients the cuspidal parabolic subalgebras. We explicate also the maximal parabolic subalgebras, since these are also important even when they are not cuspidal. Our approach is easily generalised to the supersymmetric and quantum group sett...

متن کامل

Small Subalgebras of Steenrod and Morava Stabilizer Algebras

Let P (j) (resp. S(n)(j)) be the subalgebra of the Steenrod algebra Ap (resp. nth Morava stabilizer algebra) generated by reduced powers Ppi , 0 ≤ i ≤ j (resp. ti, 1 ≤ i ≤ j). In this paper we identify the dual P (j − 1)∗ of P (j − 1) (resp. S(n)(j), for j ≤ n) with some Frobenius kernel (resp. Fpn -points) of a unipotent subgroup G(j + 1) of the general linear algebraic group GLj+1. Using thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transformation Groups

سال: 2021

ISSN: ['1531-586X', '1083-4362']

DOI: https://doi.org/10.1007/s00031-021-09652-1